
� �

CS7038 - Malware Analysis - Wk09.1

Analysis of PDF Documents

Coleman Kane

kaneca@mail.uc.edu

March 7, 2017



� �

PDF Document Overview

We looked at PDF documents briefly during Week 2.

PDF documents are intended to be a print-representation (or “final copy”)
of a document prepared for digital viewing. However, the goal is that the
document displayed on-screen is a 100% exact approximation of the visual
document you will see if printed. It has roots in the earlier-developed
PostScript language, but isn’t a fully-compatible reimplementation.

Some interesting features in (most) PDF readers:

• JavaScript (PDFjs, ECMA) interpreter
• Forms UI support (XFA, FDF, XFDF)
• U3D/PRC 3d-model embedded support
• Inline HTML
• Numerous embedded image formats
• PDF-within-PDF
• Encoded/encrypted stream data



� �

PDF Document Structure

PDF documents more or less follows the below structure:

%PDF-N.N ... header data ... ... unused ...

X Y obj object data endobj

W Z obj object data endobj

... more object data ...

xref ... xref table ... ... unused ...

trailer ... trailer data ... startxref NNNN

%%EOF

Each entity inside of the document is located within one of the indirect objects

identified above with the "X Y obj", "Z W obj", etc... declarations.

One of these objects is traditionally the “catalog”, or “root object”.

The xref table contains an index of the offsets for each of the indirect objects,

from beginning of file.

The trailer contains a pointer to the xref table as well as a dictionary that defines

the catalog, the count of objects in the cross-reference table, and other

information that may be specific to the viewer.



� �

PDF Objects

Object data is defined by beginning with the following text (where X and
Y are integers):
X Y obj

The PDF specification defines a number of data types:

• Boolean values (representing True or False)
• Numbers
• Strings, enclosed with parentheses: (this is a string)

• Names, character data beginning with a slash: /NameVal1
• Arrays, ordered data enclosed with square brackets:

[(Object) (Data) (in) (a) (list)]

• Dictionaries, name-indexed data, defined with << and >>:
<</Val1(This is a string) /Val2[(List) (data)]>>

• Streams, large blobs of arbitrary data, embedded between stream and
endstream keywords

• Null content



� �

PDF Parser

The pdf-parser.py tool in Remnux can be helpful in navigating the
PDF document structure.

• Search for data in object: pdf-parser.py -s mytext file.pdf

• Search for data in stream: pdf-parser.py
-searchstream=mytext file.pdf

• List objects and their hashes: pdf-parser.py -H file.pdf

• Extract object: pdf-parser.py -o 1 -d stream.dat

file.pdf

• Extract filtered object: pdf-parser.py -f -o 1 -d

stream.dat file.pdf

• Parse, extract malformed: pdf-parser.py -v -x

malformed.dat file.pdf

• Integrate with yara: pdf-parser.py -y, -yarastrings

• Python code generation: pdf-parser.py -g example.pdf >

example.py


	PDF Document Overview
	PDF Document Structure
	PDF Objects
	PDF Parser

