
� �

CS7038 - Malware Analysis - Wk06

Deeper Dive: x86 32/64 Assembly

Coleman Kane

kaneca@mail.uc.edu

February 22, 2017

� �

A Deeper Look

Previous lecture focused on introducing assembly language and how
program can be broken up from source code and translated into assembly
language.

Our discussion will focus on the Intel/AMD x86 instruction set. Primarily
there are 2 versions of it in use today: 32-bit and 64-bit. This instruction
set has the following characteristics:

• Register-memory architecture
• Some purpose-specific registers
• 8 (32-bit) or 16 (64-bit) direct-access general purpose registers

• Segment/Section selectors

• Direct / indirect memory access modes
• Variable-length instructions
• Internal flags, instruction pointer, and machine registers

� �

Assembly Language Source Variations

All instructions are compact binary structures.

Since Assembly Language is basically a textual representation of binary
encoded instructions.

One thing you will encounter is that the Assembly source code is just a
textual representation of the binary data. Due to this, there are differing
approaches to translating it into human-readable source. The following
two methods are predominantly used:

• AT&T, UNIX, or GNU syntax. In general: OP SRC DEST, read OP

SRC -> DEST. Frequently registers are prefixed with % symbol.
Example: “movl %rax,%rbx” puts a copy of what’s in RAX into RBX

• Intel or Microsoft syntax. In general: OP DEST SRC, read OP DEST

<- SRC. Frequently op names don’t include data width (l, b, w, q)
specifiers.
Example: “mov rbx,rax” same as above

� �

Instruction Lengths

x86 instructions are a sequence of bytes describing a unique atomic CPU
operation. It is described as a variable-width instruction set, meaning that
there is no fixed size for all instructions, but rather the number of bytes
that comprises an instruction is based upon the instruction and its
parameters.

Examples:

• jmp %rax: Jump to address provided in %rax

2 bytes

• movq $0x0000000011111111,%rbx

Copy numeric value 0x011111111 into %rbx, 10 bytes

• addl $0x12,-0x8(%ebp):
Add the 32-bit value 0x00000012 to the 32-bit value stored in the
memory location specified by performing the pointer calculation %ebp

- 0x08, 4 bytes.
• nop: Do nothing, 1 byte

� �

Generalized Instruction Formats

Instructions can be anywhere from 1 byte to ∼15 bytes depending upon
their purpose. As a general rule, x86 attempts to reserve the shorter
instructions for the more frequent ones, and relegates longer instructions to
represent less common operations.

A common layout is below:
Operation ModR/M SIB [Displacement] [Immediate] [...]

In the above:

• Operation is typically 1 or 2 bytes, but can be 4 bytes to reflect a
“modified” version of an operation using a 1-2 byte reserved prefix value

• ModR/M (when required) is a single byte that informs the CPU as to
how to interpret operands (memory, register, immediate) as well as
addressing modes

• SIB (when required) for a scaled addressing operation, what mem
register to use and what multiplier to use

• Displacement, Immediate, ... operand values that are provided -
lengths may vary

� �

CPU Registers

Local memory directly addressable by (most) instructions in the CPU. In
the 64bit x86 architecture, there are 16 registers that can be addressed
using the names R01-R15. The architecture also assigns some of these
registers to “special purposes” in many instructions, an oddity that isn’t
shared by all CPU architectures.

R0 RAX Accumulator (freq. result storage)
R1 RCX Counter (freq. used as i in iterations/loops
R2 RDX Data (freq. additional argument in operation)
R3 RBX Base (freq. used as a base address/counter)
R4 RSP Stack pointer (used to keep track of top of CPU stack)
R5 RBP Base pointer (used to keep track of base of CPU stack)
R6 RSI Source index (keeps track of indexes of source arrays)
R7 RDI Destination index (keeps track of indexes of destination arrays)

There are R8-R15 that are 8 more general registers with no other
specialized purpose. In most operations that accept a register, any R0-R15
may be used.

� �

Memory Addressing

Instructions can have varying addressing modes that represent common
programming patterns where it comes to addressing memory.

The below addressing modes relate directly to various methods you may
use in array & matrix operations in higher level languages, as well as those
containing complex data structures as elements.

• Register addressing: movq %rax,%rbx

• Immediate addressing: movq $0x0a,%rbx

• Direct memory: movq 0x1000,%rax

• Register indirect mem.: movq (%rbx),%rax

• Reg-indirect + offset mem.: movq 0x8(%rbx),%rax

• Reg-indirect*C + offset mem.: movq 0x8(,%rbx,4),%rax

• Base + Reg-indirect*C + offset mem.:
movq 0x8(%rdx,%rbx,4),%rax

	A Deeper Look
	Assembly Language Source Variations
	Instruction Lengths
	Generalized Instruction Formats
	CPU Registers
	Memory Addressing

