
� �

CS7038 - Malware Analysis - Wk05.2

Assembly Crash Course

Coleman Kane

kaneca@mail.uc.edu

February 9, 2017



� �

What Is Machine Langauge

In order to execute software on in most of your environments, the source
code for the software must be converted into machine langauge at some
level.

The most common approach, by far, is to perform static compilation of
source code from an author, which involves translating it into a
target-native machine code.

A lot of malware you will encounter written in C, C++, or Delphi, will
come in this form - frequently x86 32-bit or 64-bit code.

This form is the native “language” of your CPU, and is the most efficient
form for your software



� �

Architecture Background

Among CPU architectures, there are two predominant models:

• Load-Store Architecture
• Register-Memory Architecture

In both cases, the computer is divided into components that are system
memory (typically “RAM”) and CPU registers. The CPU registers are
given names, and are analogous to variables in your programs.

Frequently, the processor needs to “localize” any data that it needs to
operate on. In the case of load-store, this “localization” is actually an
architectural requirement.



� �

Instruction Families

The atmoic operations executed at the machine-code level are called
“instructions”, and these implement the core functionality of the CPU
hardware. There are many of them (roughly between 900-1000
implemented on current CPUs), and thus they are divided into instruction
families:

• Arithmetic
• Control transfer
• Memory transfer
• System

For the time being, we will focus on the arithmetic, control, and memory
instructions. These represent the core feature set of a CPU for
implementing algorithms.



� �

Typical Compilation Sequence

Frequently, compilation consists of the following sequence of steps:

1. Write application
2. Compile source code into assembly
3. Assemble assembly source into binary machine code
4. Link chunks (objects) containing binary into EXE / DLL
5. Install on target system

Important note: without some sort of emulation support, the compiled
software will frequently only run on machines and OS versions that it was
built to be compatible with.



� �

Control Flow Graph Construction

During step 1 from above, prior to translating the C code into assembly,
the software is broken up into a graph, dividing the program up into
sequences of non-control-transfer operations called “blocks”. These blocks
are interconnected by the control transfer operations, creating a “control
flow diagram”.

Those blocks are then independently compiled from the blocks of source
code into blocks of assembly instructions that implement the source code.

Following this, the blocks are then arranged in the output file, and the
destinations of control-flow instructions are adjusted to match the output
organization.



� �

Resources for Assembly Language

I won’t go into a lot of detail on the individual instructions here. However
there are a number of good references online:

• x86 Instruction reference - simple site - http://ref.x86asm.net/
• AMD64 Programmer’s reference, Vol 3 - https://support.amd.

com/TechDocs/24594.pdf (PDF)
• Sandpile - http://sandpile.org
• Navigable parsed version of Intel 64 reference - https://github.

com/zneak/x86doc

In many cases, you can request either print or electronic copies of the
instruction set for most CPUs you are working with by contacting the
manufacturer of the target architecture.

http://ref.x86asm.net/
https://support.amd.com/TechDocs/24594.pdf
https://support.amd.com/TechDocs/24594.pdf
http://sandpile.org
https://github.com/zneak/x86doc
https://github.com/zneak/x86doc


� �

Example Program



� �

Program Assembled and graphed



� �

Disassembly & IDA

When access to the program source code is unavailable, as typically is the
case with malware, it is necessary to use various tools to reconstruct the
control-flow-graph and help the engineer make sense of the program. In
some cases, tools may even help convert some or all of the disassembly into
some possibly readable C program code.

Some tools exist to help with this. Each have their own strengths and
weaknesses:

• IDA - https://www.hex-rays.com/ (closed src)
• binary ninja - https://binary.ninja/ (closed src)
• ROSE - https://www.rose-compiler.org/ (semi-open src)
• radare2 - http://rada.re/r/ (open src)
• snowman - https://github.com/yegord/snowman (open src)

https://www.hex-rays.com/
https://binary.ninja/
https://www.rose-compiler.org/
http://rada.re/r/
https://github.com/yegord/snowman

	What Is Machine Langauge
	Architecture Background
	Instruction Families
	Typical Compilation Sequence
	Control Flow Graph Construction
	Resources for Assembly Language
	Example Program
	Program Assembled and graphed
	Disassembly & IDA

