
� �

CS7038 - Malware Analysis - Wk09.1

Analysis of PDF and Office Documents

Coleman Kane

kaneca@mail.uc.edu

March 20, 2018



� �

PDF Document Overview

We looked at PDF documents briefly during Week 2.

PDF documents are intended to be a print-representation (or “final copy”)
of a document prepared for digital viewing. However, the goal is that the
document displayed on-screen is a 100% exact approximation of the visual
document you will see if printed. It has roots in the earlier-developed
PostScript language, but isn’t a fully-compatible reimplementation.

Some interesting features in (most) PDF readers:

• JavaScript (PDFjs, ECMA) interpreter
• Forms UI support (XFA, FDF, XFDF)
• U3D/PRC 3d-model embedded support
• Inline HTML
• Numerous embedded image formats
• PDF-within-PDF
• Encoded/encrypted stream data



� �

PDF Document Structure

PDF documents more or less follows the below structure:

%PDF-N.N ... header data ... ... unused ...

X Y obj object data endobj

W Z obj object data endobj

... more object data ...

xref ... xref table ... ... unused ...

trailer ... trailer data ... startxref NNNN

%%EOF

Each entity inside of the document is located within one of the indirect objects

identified above with the "X Y obj", "Z W obj", etc... declarations.

One of these objects is traditionally the “catalog”, or “root object”.

The xref table contains an index of the offsets for each of the indirect objects,

from beginning of file.

The trailer contains a pointer to the xref table as well as a dictionary that defines

the catalog, the count of objects in the cross-reference table, and other

information that may be specific to the viewer.



� �

PDF Objects

Object data is defined by beginning with the following text (where X and
Y are integers):
X Y obj

The PDF specification defines a number of data types:

• Boolean values (representing True or False)
• Numbers
• Strings, enclosed with parentheses: (this is a string)

• Names, character data beginning with a slash: /NameVal1
• Arrays, ordered data enclosed with square brackets:

[(Object) (Data) (in) (a) (list)]

• Dictionaries, name-indexed data, defined with << and >>:
<</Val1(This is a string) /Val2[(List) (data)]>>

• Streams, large blobs of arbitrary data, embedded between stream and
endstream keywords

• Null content



� �

PDF Parser

The pdf-parser.py tool in Remnux can be helpful in navigating the
PDF document structure.

• Search for data in object: pdf-parser.py -s mytext file.pdf

• Search for data in stream: pdf-parser.py
-searchstream=mytext file.pdf

• List objects and their hashes: pdf-parser.py -H file.pdf

• Extract object: pdf-parser.py -o 1 -d stream.dat

file.pdf

• Extract filtered object: pdf-parser.py -f -o 1 -d

stream.dat file.pdf

• Parse, extract malformed: pdf-parser.py -v -x

malformed.dat file.pdf

• Integrate with yara: pdf-parser.py -y, -yarastrings

• Python code generation: pdf-parser.py -g example.pdf >

example.py



� �

Office Software Overview

In modern office environments, a common practice is to use a number of
file formats for interchange of work-related, editable content. The most
common pattern is a software suite providing Spreadsheet, Slide
Presentation, and Document creation.

The most common suite, by far, is Microsoft Office. However, there are
others:

• Apache OpenOffice
• LibreOffice
• KOffice
• Apple iWork
• Hancom Office (Korean, Hangul)
• Ichitaro (japanese)

We will focus our efforts on the Microsoft suite of software, though it is
notable that the space is diverse, and any one of these can be its own
intrusion vector.



� �

Microsoft Office File Formats

Generally, there are two data file formats that are of interest to MS Office
document malware analysis:

• Office Open XML (OOXML) Files - Basically PKZIP archives with a
specially-defined layout. Most office documents since about 2007 are
dsitributed using this format (XLSX, DOCX, PPTX, etc.)

• Compound File Binary (CFB) - A binary file specification defined by
Microsoft. Older Microsoft Office documents were built up from this
format (DOC, XLS, PPT). Since 2007, it is still frequently used to
embed Microsoft-specific binary data structures within documents and
applications.

Latest CFB file specification:
https://msdn.microsoft.com/en-us/library/dd942138.aspx

Latest Office Open XML specifications (ISO/IEC 29500-1:2016,
29500-2:2012, 29500-3:2015, 29500-4:2008):
https://www.iso.org/committee/45374/x/catalogue/

https://msdn.microsoft.com/en-us/library/dd942138.aspx
https://www.iso.org/committee/45374/x/catalogue/


� �

The CFB file Format

We will begin with the CFB file format, which is useful in attacking
Microsoft-specific vulnerabilities.

The CFB file format is a chunked data format, where the file is divided
into sectors, and then there exist file allocation tables that each define
an array of pointers to other file locations that map blocks in the file to
their ordering within a data stream.

In contrast to the data from a PDF file, this organizational model creates
a file structure where whole data streams (such as images, sub-documents,
videos, content, embedded fonts, macros, etc...) are not guaranteed to
exist contiguous within the file.

There exist a number of utilities that are useful for naviagting this
structure:

• https://www.decalage.info/python/oletools

• https://github.com/unixfreak0037/officeparser

• https://poi.apache.org/ - Java API for Office Documents

https://www.decalage.info/python/oletools
https://github.com/unixfreak0037/officeparser
https://poi.apache.org/


� �

CFB Sectors

Each CFB file is divided into sectors. The first sector of the file contains
the CFB header, which is where all of the information defining the
top-level file layout.

This informs the user on how the rest of the file is organized, including the
sector size, as well as where to find the document directory, file allocation
tables, etc.

Almost exclusively, sector sizes are defined to be 512 bytes (0x200 hex),
which is consistent with most common OS filesystems as well.



� �

CFB Streams Layout

Sector layout to stream mapping



� �

oletools helpers

All of the following tools are open-source, and have great documentation
on the following site: https://www.decalage.info/python/
oletools

• olebrowse: A GUI browser enabling you to navigate, view and
extract streams. Very basic.

• oledir: Dump the stream directory of the document
• olemap: Dump the sector mappings (allocation) of a file
• olemeta: Dump metadata about the document
• olevba: Dump VBA macros from files

https://www.decalage.info/python/oletools
https://www.decalage.info/python/oletools


� �

OOXML Layout

OOXML files can be analyzed with a simple unzip program. Some of the
contents may need other tools to further analyze (like the JPEG in this
one):

Archive: test-doc.docx

testing: _rels/.rels OK

testing: word/document.xml OK

testing: word/styles.xml OK

testing: word/_rels/document.xml.rels OK

testing: word/settings.xml OK

testing: word/media/image1.jpeg OK

testing: word/fontTable.xml OK

testing: docProps/app.xml OK

testing: docProps/core.xml OK

testing: [Content_Types].xml OK



� �

Office Macros

Microsoft Office supports executable scripts embedded within documents.
A common language used for this is Visual Basic for Applications (VBA).
Similar to PDFjs that we discussed earlier, this langauge is a derivative of
Visual Basic that has special hooks into the Office environment and the
current (and linked) documents.

An example macro is available here: https://msdn.microsoft.com/
en-us/library/office/aa173542(v=office.11).aspx

Frequently these will be used to execute arbitrary code, without relying
upon exploits that intend to break parsing of the document. Some
examples:

• http://blog.fortinet.com/2017/03/08/

microsoft-excel-files-increasingly-used-to-spread-malware

• https://blogs.sophos.com/2015/09/28/

why-word-malware-is-basic/

• http://www.kahusecurity.com/2015/

malicious-word-macro-caught-using-sneaky-trick/

https://msdn.microsoft.com/en-us/library/office/aa173542(v=office.11).aspx
https://msdn.microsoft.com/en-us/library/office/aa173542(v=office.11).aspx
http://blog.fortinet.com/2017/03/08/microsoft-excel-files-increasingly-used-to-spread-malware
http://blog.fortinet.com/2017/03/08/microsoft-excel-files-increasingly-used-to-spread-malware
https://blogs.sophos.com/2015/09/28/why-word-malware-is-basic/
https://blogs.sophos.com/2015/09/28/why-word-malware-is-basic/
http://www.kahusecurity.com/2015/malicious-word-macro-caught-using-sneaky-trick/
http://www.kahusecurity.com/2015/malicious-word-macro-caught-using-sneaky-trick/

	PDF Document Overview
	PDF Document Structure
	PDF Objects
	PDF Parser
	Office Software Overview
	Microsoft Office File Formats
	The CFB file Format
	CFB Sectors
	CFB Streams Layout
	oletools helpers
	OOXML Layout
	Office Macros

