
� �

CS7038 - Malware Analysis - Wk08.2

Analysis of Complex Data Structures

Coleman Kane

kaneca@mail.uc.edu

March 2, 2017



� �

Dynamically-allocated Structures

The previous lecture discussed data organization using the C programming
language. It focused on a lot of the lower level atomic datatypes, numeric
encoding, and some of the primitive structures built atop that foundation.

However, most higher-level languages, and especially more powerful
frameworks, make heavier use of complex multi-level data structures and
dynamic allocation.



� �

Linked Lists

A linked list is arguably one of the core data structures used for dynamic
allocation in many programming languages and frameworks.

As we observed with the 8.1 lecture, when using the common run-time
allocation calls new/delete and malloc/free, the data organization in
memory may not reflect the programmatic organization from the author.

In many cases, it becomes our job as reverse engineers to rebuild the
author’s structure, through malware analysis.



� �

Hash Tables

Hash tables are built from linked lists, and frequently at their core are
built out of an array of pointers to the head element of a linked list. So
there are really two data structures comprising the environment:

• Contiguous array
• Linked list

This provides two structures of indirection that will need to be navigated
and rebuilt during analysis.



� �

B-Tree

Binary trees are very similar to linked lists, but have two “next” pointers.
Additionally, the data may no longer have an exact natural ordering to it,
and this may complicate analysis of it.

Arguably, the biggest distinction between this and and the linked list that
will make a difference for you is that there may be multiple configuarations
representing the same set of data.



� �

C++ Data Structures

In C++ it is common to use the Standard Template Library and its
derivatives for organizing data. Under the hood, many of these elements
utilize primitives similar to what we’ve documented in the past two classes.

• std::vector

• std::list

• std::queue

• std::stack

• std::map, std::unordered_map, std::set, std::hash_map
• std::string

Also, custom-rolled use-case-efficient versions of these are commonplace
among seasoned C++ programmers



� �

Other Langauges

Other langauges, such as Perl, Java, Python, PHP, C# utilize these
internally as well:

• LinkedList: Java/C#
• Python lists, Perl arrays/slices
• Python dict, Perl hashes
• Java/C# Hashtable, HashMap, Map
• Java/C# Dictionary
• Many, many, more ...

Later we will try analyzing malware in these languages, and knowledge of
this layout is imperative to understanding data storage in these systems.


	Dynamically-allocated Structures
	Linked Lists
	Hash Tables
	B-Tree
	C++ Data Structures
	Other Langauges

