
� �

CS7038 - Malware Analysis - Wk08

Analysis of C Data Types

Coleman Kane

kaneca@mail.uc.edu

February 28, 2017



� �

Data Structures Explained

Computing systems are built around data, and in particular, structured
data. This has the feature of providing organization to the data contained
within a structure, as some computer code is expected to be able to accept
the contents of the structured data, and then perform operations, configure
itself, or otherwise alter program execution based upon this.

In this lecture, we will take some time to analyze data structures and data
representations which will be useful when reverse engineering malicious
code. It will be common to have on-disk and in-memory data structures,
that aren’t executable code, but that need to be analyzed in order to
discern what executable code is doing.



� �

Numeric Representation - Endianness

A core component of data representation is how an architecture represents
numeric and array data.

For numeric data, two common methods are used:

• Litte-Endian - least-significant digits/bytes first
• Big-Endian - most-significant digits/bytes first

These have to do with numeric data handling when multiple bytes are
necessary in storing numeric data. Namely, in what order should the data
be stored? In the case of written numbers using the prevalent arabic
numberic system, the number “1024” is stored in what’s called Big Endian

format.

In the above example, each digit is a number that can be one of 10 values,
and the first digit we read represents the largest element of the power-series
constructing the number (1× 103 + 0× 102 + 2× 101 + 4× 100).



� �

Endianness

For architectural reasons, in x86 including x86-64 architectures, it is
common to instead use little endian. Consider adding two really large
numbers togeher, typically you start with the right-hand digit of a number
and work the addition operation incrementally toward the left.

The value 27452 is a decimal number that can be written in hexadecimal
as 0x6b3c. This number consists of two bytes: 6b 3c. It is encoded using
the following sequence of bytes in each ordering format:

• Little-endian: 3c 6b

• Big-endian: 6b 3c

Neither is arguably better than the other. These days both are commonly
used, and their application is primarily driven by the underlying
architecture. It can be argued, though, that little-endian is the more
prevalent of the two in computers.



� �

Signedness

Another interesting feature of numeric representation is signed-ness. This
comes into play when dealing with negative numbers or really large values.

A 16-bit integer has enough unique configuration to store 65536 distinct
values. Frequently, a signed 16-bit integer is one that is defined to hold
any one of the values -32768 through 32767. An unsigned 16-bit integer
is defined to hold any value from 0 through 65535 (so, as many positive
integers as possible, starting with 1, and including 0).

The negative numbers in this scenario are those which have the
upper-most bit set to 1, however rather than merely encoding positive
numbers with this bit set, these are actually stored in what’s called Two’s

Complement form:
http://www.tfinley.net/notes/cps104/twoscomp.html

Consider the case where you have 0 and want to subtract 1 from it. Using
normal integers, and ignoring sign, you would get a value with all bits set
to 1. Two’s complement defines this value to be -1, rather than the more
humanly-intuitive “lowest negative number” of -32768.

http://www.tfinley.net/notes/cps104/twoscomp.html


� �

Array and Matrix Forms

In many cases, it also becomes common to find data organized in arrays
and matrices in memory. In the cases of explicit arrays and matrices, the
data is stored in one contiguous chunk in memory:
long array1[12]; /* 12*4 = 48 bytes buffer. */

long array1[12][3]; /* 12*4*3 = 144 bytes buffer. */

However, sometimes arrays and matrices are created from pointers. This
may lead to a single contiguous array of pointers, but each “row” may not
be adjacent to its neighbor:

int *matrix[3];

for(int c = 0; c < 3; c++) {

matrix[c] = malloc(sizeof(int}*12);

}

In the above, we create a code-addressable 3× 12 matrix to store data, but
each of the 3 twelve byte rows is not guaranteed to be adjacent to one
another in memory. Furthermore, the matrix storage really just stores
indirect memory pointers rather than pointing to the first piece of data.



� �

Struct and Class Forms

In C the struct and class keywords are used to define complex
user-defined types. These are frequently collections of atomic data, and can
include arrays, pointers, and even other structs and classes. Atomic data
in these is stored semi-contiguously. Where some efficiency can be gained
through padding, padding between elements may or may not be added.

struct test_struct_def {

unsigned int ip_address;

char modifier;

unsigned short port;

};

After analyzing the above data in memory, it becomes apparent that all of
the values are adjacent to one another in memory, however, there is a
one-byte gap between modifier and port. In C/C++, this behavior can
be controlled using (where n is an int constant):
#pragma pack(n)


	Data Structures Explained
	Numeric Representation - Endianness
	Endianness
	Signedness
	Array and Matrix Forms
	Struct and Class Forms

