
� �

CS7038 - Malware Analysis - Wk05.1

Static Analyzers

Coleman Kane

kaneca@mail.uc.edu

February 7, 2017

� �

Signature-based Anti-Virus Systems

By far, the most popular weapon against cyber attacks is signature-based

antivirus software. When you are relying upon Symantec’s Norton
Antivirus, Intel/McAfee’s VirusScan, and similar products, you are using a
signature-based antivirus solution.

This may not be the exclusive function of the tools, but it is a significant
component. In this lecture we will dive into this approach, and use the
malware analysis work we’ve done up to this point to illuminate what’s
going on.

� �

Data Collection Review

Up to this point, we’ve analyzed two different file types:

• PDF
• Win32 EXE/DLL

From the above, we’ve inspected the content of these files to extract the
following data points:

• PDF objects & streams data
• Author
• Creation / Compile / Edit times
• Section identifiers
• API libraries used
• External symbols imported

� �

Tool Survey

Pulling from the following blog post:
https://zeltser.com/

custom-signatures-for-malware-scan/

We will review the following tools for signature development, and then
focus in on Yara for some deeper tool development and study.

• vscan: https://github.com/mstone/vscan built around
Google’s re2 library (https://github.com/google/re2)

• ClamAV: http://www.clamav.net/, which uses a limited binary
pattern language for efficiency vs. versatility balance

• Yara: http://virustotal.github.io/yara/, which uses its own
pattern matching engine

https://zeltser.com/custom-signatures-for-malware-scan/
https://zeltser.com/custom-signatures-for-malware-scan/
https://github.com/mstone/vscan
https://github.com/google/re2
http://www.clamav.net/
http://virustotal.github.io/yara/

� �

vscan

The tool vscan is a malware scanner that’s predominantly focused on
searching for the presence of text-based evidence of malware, given a set of
files.

The list of information to search for is managed in a data set named
sensors in the config.lua file. The narrow focus of the tool and
relatively straightforward configuration make it a useful educational
example.

An example of its input data set is here:
https://github.com/mstone/vscan/blob/master/config.lua

https://github.com/mstone/vscan/blob/master/config.lua

� �

ClamAV

The ClamAV engine has been under active development and production
deployment, for arguably the longest duration of these three systems.
Historically speaking, ClamAV has been prevalent in Linux/UNIX-based
mailserver deployments for attachment scanning, as well as malware
scanning plugin modules for webservers, protecting against malicious
uploads.

ClamAV has its own pattern definition language, and a large library of
malware identifiers is maintained by an active support community. Using
it is simple (below example using our evil.pdf from Week2):

bash$ clamscan evil.pdf

evil.pdf: Win.Trojan.MSShellcode-7 FOUND

----------- SCAN SUMMARY -----------

Known viruses: 5725070

Engine version: 0.99.2

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.07 MB

Data read: 0.04 MB (ratio 1.64:1)

Time: 7.087 sec (0 m 7 s)

� �

ClamAV Signatures

ClamAV allows you to build signature databases out of the hash digest
values we discussed earlier. For example:
sigtool -md5 evil.pdf

More powerfully, however, ClamAV supports a pattern language. This
language is also paired with an optional file-structure parsing mechanism
that can be used to create powerful, yet efficient, signatures. Full
documentation at:
https://github.com/vrtadmin/clamav-devel/blob/master/

docs/signatures.pdf

Looking at our evil.pdf we have the following content:
please tick the "Do not

To match this content in future PDFs, we could generate the following
ClamAV signature:
PDFmal.metasploit.cs7038;Target:10;0;706c65617365207469636b20746865

https://github.com/vrtadmin/clamav-devel/blob/master/docs/signatures.pdf
https://github.com/vrtadmin/clamav-devel/blob/master/docs/signatures.pdf

� �

Yara

The Yara project is a newer system, introduced around 2009-2010, and
has a large following of community support. It is similar to ClamAV in this
regard. However, the community in Yara is focused considerably more on
using it for the purposes of malware research and analysis, and less focused
on malware detection and alerting. However, it works well for both!

� �

Yara Rules

Like ClamAV, Yara also supports a custom signature-building language.
The syntax provided by Yara is considerably more readable, and arguably
more flexible. The side-effect of this functionality is significantly more per
rule overhead - leading many users to focus on its use in malware analysis.

Documentation: http://yara.readthedocs.io/en/v3.5.0/
index.html

rule evil_pdf_rule {

meta:

author = "Coleman Kane"

revision = 12

description = "Detect evil.pdf sample from Week2 lecture"

strings:

$a = "\"Do not show this message again\"" nocase

$r = /if exist.*template\.pdf/

$b = { 706c65617365207469636b207468652022446f206e6f74 }

$pt1 = "start " nocase

$pt2 = "cd " nocase

$pt3 = "exist " nocase

$pt4 = "cmd.exe" nocase

condition:

$a or $b or $r or 2 of ($pt*)

}

http://yara.readthedocs.io/en/v3.5.0/index.html
http://yara.readthedocs.io/en/v3.5.0/index.html

� �

LibYara C API

In addition to its functionality as a command-line scanning tool like
vscan and clamscan, the real power inherent in Yara is that it is a C
library at its core, and it can be incorporated to extend other projects.

Documentation for this C API is here: http://yara.readthedocs.
io/en/v3.5.0/capi.html

At a minimum, initialization consists of the following calls:

• yr_initialize() - Initialize library
• yr_compiler_create(YR_COMPILER**) - Create new compiler
• yr_compiler_add_file(YR_COMPILER*, FILE*, NULL,

char*) - read a file and compile the rules it contains (multiple calls

possible)
• yr_compiler_get_rules(YR_COMPILER*, YR_RULES**) -

Load a pointer to now-compiled rules into local program scope

http://yara.readthedocs.io/en/v3.5.0/capi.html
http://yara.readthedocs.io/en/v3.5.0/capi.html

� �

LibYara C API (Scanning)

Scanning involves creating your own custom callback function and then
executing one or more of the yr_rules_scan_* functions, iterating if
needed.

The scanner will run until it has exhaustively searched the buffer or file
you provided, and will call your callback function one or more times during
the run, providing an opportunity for your custom code to react to the
scanner findings.

When a rule hit occurs, you will receive a pointer to the following data
structure in the void *message_data parameter:

struct {

const char *identifier; /* "no_rule" / "yes_rule" for us */

const char *tags; /* Rule-defined tags */

YR_META *metas; /* Rule-defined metadata key=value pairs */

YR_STRING *strings; /* strings from rule */

};

� �

LibYara Python API

Additionally, another helpful feature of yara is that there’s a really useful
Python module for it. In most cases, you can use pip or pip3 to install it:
pip install yara-python

Unlike the C API, the Python context can be instantiated rather quickly:
rules = yara.compile(filepath="yara_rules.yar")

And then, scanning is implemented in a manner very similar to the popular
re(https://docs.python.org/3/library/re.html) module:
matches = rules.match(data=input_data)

https://docs.python.org/3/library/re.html

	Signature-based Anti-Virus Systems
	Data Collection Review
	Tool Survey
	vscan
	ClamAV
	ClamAV Signatures
	Yara
	Yara Rules
	LibYara C API
	LibYara C API (Scanning)
	LibYara Python API

