
� �

CS7038 - Malware Analysis - Wk04.2

Applying Static Analysis

Coleman Kane

kaneca@mail.uc.edu

February 5, 2017



� �

Applying Your Static Analysis

There are numerous uses for your static analysis findings:

• Document unique contents that could be used to detect copies of this
malware or malware family elsewhere

• Describe purpose, functions, or threat level of malware
• Build a utility that can extract structured metadata from future

samples

This lecture will discuss some programmatic approaches that I use
frequently to achieve these ends.

Additionally, there are a large number of tools out there to provide this
service for us. We will focus a lot of our efforts on the engineering of
components that would build these tools.



� �

Data Management

It is common to build up a large amount of data from malware analysis.
Managing this, in addition to formal malware analysis reports, becomes
extremely important and challenging over time, as collected data grows.

I tend to look toward a database solution that has a programmatic API
and is easy to integrate into my toolchain. In the class I’ll be working
primarily with two, but there are many options out there and you are all
welcome to experiment with your favorites:

• SQLite - https://sqlite.org
• MongoDB - https://mongodb.com

There are numerous full platforms for managing this work. Below are a
couple popular ones:

• CRITs: https://crits.github.io/
• MISP: http://www.misp-project.org

https://sqlite.org
https://mongodb.com
https://crits.github.io/
http://www.misp-project.org


� �

Sample Tracking

When dealing with numerous malware samples, we would like to
distinguish the exact contents from the file names. For example, we could
very easily call our malware NOTEPAD.EXE if we wanted to. Because of
this, referring to samples by their filename is discouraged, and very quickly
can present namespace collision issues.

The most common approach I’ve seen has been to use checksum (or digest)
calculations as a de-facto unique id that is specifically derived from file
contents. The common ones I’ve seen are listed below, and are
traditionally dsitributed with most Linux systems:

• MD5 digest - md5sum - https://tools.ietf.org/html/rfc1321

• SHA-1 digest - sha1sum - https://tools.ietf.org/html/rfc3174

• SHA-256 digest - sha256sum - https://tools.ietf.org/html/

rfc6234

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc3174
https://tools.ietf.org/html/rfc6234
https://tools.ietf.org/html/rfc6234


� �

MongoDB Simple Structured Data Ingestion

I like MongoDB for a number of reasons. It’s easy to get started with, and
doesn’t necessarily enforce schema definition or planning up front, like
most SQL databases tend to do.

Additionally, it comes with some nice programming interfaces:

• A JavaScript engine for internal querying and command-line interaction

• PyMongo - https://api.mongodb.com/python/current/ -

LightWeight Python interface

• MongoEngine - http://mongoengine.org/ - A more structured Python

interface with schema and similar features familiar to SQL or MVC developers

• package mgo - https://godoc.org/labix.org/v2/mgo - Interface for

Go

• MongoDB API List - https://api.mongodb.com/

I will stick with using PyMongo. For most Python programs, you can
install it and then import it into your code like so:
import pymongo

https://api.mongodb.com/python/current/
http://mongoengine.org/
https://godoc.org/labix.org/v2/mgo
https://api.mongodb.com/


� �

Easy MongoDB Setup

Generally speaking, MongoDB will automatically create databases and
collections (which are kind of analogous to SQL Tables) where they don’t
already exist.

If you’d like to do it manually:

bash$ mongo cs7038 # Creates new "cs7038" database

MongoDB shell version: 2.4.9

connecting to: cs7038

> db.createCollection(’malware’) // Creates new collection named "malware"

{ "ok" : 1 }

> show databases

cs7038 0.203125GB

local 0.078125GB

test (empty)

> show collections

malware

system.indexes

The above steps will instantiate a new database and collection for you to
begin storing your data.



� �

Importing Data for a Sample

We will now discuss how to internalize the information gathered from some
of the tools that we used on Tuesday. Recall that we were extracting
structured data using objdump and exiftool.

Using our toolset, we have decided that we would like to import the
following data into our database:

• MD5, SHA-1, SHA-256 digests as identifiers
• Filename(s) we have encountered the file as being named
• File type information
• List of section names (if an EXE)
• Company Name (if exists)
• Author (if exists)
• File Description (if exists)
• File size
• Compile, Creation, or Modification time from metadata (not filesystem)


	Applying Your Static Analysis
	Data Management
	Sample Tracking
	MongoDB Simple Structured Data Ingestion
	Easy MongoDB Setup
	Importing Data for a Sample

