
� �

CS7038 - Malware Analysis - Wk04.1

Static Analysis Introduction

Coleman Kane

kaneca@mail.uc.edu

February 1, 2017

� �

Static Analysis

Static Analysis is the process of documenting your observations about
what identifying characteristics a malware sample exhibits. The goal of
this process is that, after analysis, you have extracted some identifying
characteristics from a malware sample that can be used to help you search
further for more samples of that malware (and, hopefully, others that are
similar to it).

We distinguish static analysis to focus on how a sample “looks”, for the
purpose of identifying any samples of it that may be dormant and inactive
within your attack surface. This is different from dynamic analysis,
where we are trying to define the actions it takes or may take when
executed on a system.

� �

Files Have Structure

Most information formats in computing have “structure” to them:

PNG Files are described as “datastreams” that begin with a sequence of 8 bytes,
followed by one or more “chunks”, which themselves have substructure:
https://www.w3.org/TR/PNG/#5DataRep

EXE Files are the files interpreted by Windows to contain Program and
Dynamically Linkable Library code. These contain two or three header blocks (of
a defined byte length), plus a section directory (like a table of contents), followed
by one or more sections, each of which has their own substructure. Each section
in the PE32 file must contain a reference entry in the section directory.
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files#PE_Files

MS-CFB Files, also known as OLE are a container format common to many
Microsoft applications and systems. Many people associate these with the older
MSOffice files, DOC, XLS, PPT, etc. These are even more complex structures,
mimicking a filesystem within a file, complete with hierarchy and block-based
storage allocation.

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CFB/[MS-CFB].pdf

https://www.w3.org/TR/PNG/#5DataRep
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files#PE_Files
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CFB/[MS-CFB].pdf

� �

PNG File Visual

Figure 1: From: http://stegosploit.info/

http://stegosploit.info/

� �

PE32 File Visual

The PE32 file format,
which is the preferred container for Windows
executable programs and dynamically linkable
libraries, has a number of components inside.

From: http://resources.infosecinstitute.

com/2-malware-researchers-handbook-demystifying-pe-file/

Even better diagram: http://images2015.cnblogs.

com/blog/268182/201509/268182-20150906154155451-80554465.jpg

http://resources.infosecinstitute.com/2-malware-researchers-handbook-demystifying-pe-file/
http://resources.infosecinstitute.com/2-malware-researchers-handbook-demystifying-pe-file/
http://images2015.cnblogs.com/blog/268182/201509/268182-20150906154155451-80554465.jpg
http://images2015.cnblogs.com/blog/268182/201509/268182-20150906154155451-80554465.jpg

� �

Backus-Naur Form, C++ Form

Sometimes it is more convenient to describe the structure in terms of a
grammar. This is particularly helpful if you intend to write a parser for the
language. A common format used to describe language and structure is
Backus-Naur Form (a.k.a. BNF).

An example could be:

< pe_file > ::= mz_header dos_stub pe_header [optional_header]

< section_table > < sections >

< section_table > ::= section_descriptor [< section_table >]

< sections > ::= pe_section [< sections >]

Another approach might be to define them as C data structures:

struct pe_file {

char mz_header[0x40];

char dos_stub[0xc0];

char pe_header[0x18];

char optional_header[0xe0];

struct section_table s_tbl; /* You’d define this */

struct section *sections; /* and this, elsewhere. */

};

� �

Unstructured Data

The previous slides described some well-defined file layouts, or structures.
Generally speaking, a file is a container of a bunch of data. You may need
to analyze that data as either structured or unstructured data.

Structured Data is content which has meaning or context associated with it
based upon its organization. The information, therefore, is a combination
of the data bytes, as well as the placement of that data within a particular
structure. For instance, the value “1000” has a different meaning when in
the field for section size versus PE header offset.

Unstructured Data is content for which you do not have any assigned
meaning or context associated with its positioning. Upon initial review,
much of the content within malware that you have yet to analyze fits this
unstructured definition.

The task of Reverse Engineering includes attempting to derive what
the meaning of unstructured data is within a malicious artifact.

� �

Data Extraction

It is very common to extract data from artifacts, simultaneously using
structured and unstructured approaches.

Structured data extraction attempts to pull content out of an artifact, and,
using context, define its meaning and report both to the user. One of the
most common, and broadly-applicable tools toward this end is the
open-source Perl project, exiftool: http://www.sno.phy.
queensu.ca/~phil/exiftool/

Example: exiftool document.pdf

Unstructured data extraction attempts to pull content out of an artifact,
frequently matching a pattern, and report these findings to an analyst in
order to catalog them and possibly derive meaning from them. An
exceedingly common utility for this is distributed with nearly all Linux
systems: strings
Example (show all strings length>=6): strings -n6 file.exe

Similar: grep -a -o -P ’[\x20-\x7f]{6,}’ file.exe

http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.sno.phy.queensu.ca/~phil/exiftool/

	Static Analysis
	Files Have Structure
	PNG File Visual
	PE32 File Visual
	Backus-Naur Form, C++ Form
	Unstructured Data
	Data Extraction

